The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control.
نویسندگان
چکیده
We explored the function of the human DEAD-box Y RNA helicase DBY (DDX3Y) gene located in the (AZFa) region on the human Y chromosome (Yq11.21). Deletion of this Y interval is known to be a major cause for the occurrence of a severe testicular pathology, the Sertoli-cell-only (SCO) syndrome. DBY has a structural homologue on the short arm of the X chromosome DBX (DDX3X) (Xp11.4). We found widespread transcription of both genes in each tissue analyzed, although predominantly in testis tissue. However, translation of DBY was detected only in the male germ line, whereas DBX protein was expressed in all tissues analyzed. In testis tissue sections, DBY protein was found predominantly in spermatogonia, whereas DBX protein was expressed after meiosis in spermatids. We conclude that although both RNA helicases are structurally very similar, they have diverged functionally to fulfill different roles in the RNA metabolism of human spermatogenesis, and that deletion of the DBY gene is the most likely cause of the severe testicular pathology observed in men with AZFa deletions.
منابع مشابه
The critical region of overlap defining the AZFa male infertility interval of proximal Yq contains three transcribed sequences.
The position of deletion breakpoints in a series of four AZFa male infertility patients has been refined using new markers derived from BAC clone DNA sequence covering the AZFa male infertility interval. The proximal half of the AZFa interval is occupied by pseudogene sequences with homology to Xp22. The distal half contains an anonymous expressed sequence tag (named AZFaT1) found transcribed i...
متن کاملDdh240 2333..2341
We explored the function of the human DEAD-box Y RNA helicase DBY (DDX3Y ) gene located in the (AZFa) region on the human Y chomosome (Yq11.21). Deletion of this Y interval is known to be a major cause for the occurrence of a severe testicular pathology, the Sertoli-cell-only (SCO) syndrome. DBY has a structural homologue on the short arm of the X chromosome DBX (DDX3X ) (Xp11.4). We found wide...
متن کاملRe: AZFa protein DDX3Y is differentially expressed in human male germ cells during development and in testicular tumours: new evidence for phenotypic plasticity of germ cells.
BACKGROUND DDX3Y (DBY), located within AZoospermia Factor a (AZFa) region of the human Y chromosome (Yq11), encodes a conserved DEAD-box RNA helicase expressed only in germ cells and with a putative function at G1-S phase of the cell cycle. Deletion of AZFa results most often in germ cell aplasia, i.e. Sertoli-cell-only syndrome. To investigate the function of DDX3Y during human spermatogenesis...
متن کاملComplex transcriptional control of the AZFa gene DDX3Y in human testis
The human DEAD-box Y (DBY) RNA helicase (aka DDX3Y) gene is thought to be the major azoospermia factor a (AZFa) gene in proximal Yq11. Men with its deletion display no somatic pathologies, but suffer from complete absence of germ cells. Accordingly, DDX3Y protein is expressed only in the germline in spermatogonia, although the transcripts were found in many tissues. Here, we show the complex tr...
متن کاملDDX3Y gene rescue of a Y chromosome AZFa deletion restores germ cell formation and transcriptional programs
Deletions of the AZFa region (AZoospermia Factor-a) region of the human Y chromosome cause irreversible spermatogenic failure that presents clinically in men as Sertoli-cell only (SCO) pathology of the testis. Deletions of the AZFa region typically encompass two genes: DDX3Y and USP9Y. However, human genetic evidence indicates that SCO is most tightly linked to deletion of DDX3Y and that deleti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 13 19 شماره
صفحات -
تاریخ انتشار 2004